Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Neurointerv Surg ; 14(6): 539-545, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1854390

ABSTRACT

BACKGROUND: Robotically performed neurointerventional surgery has the potential to reduce occupational hazards to staff, perform intervention with greater precision, and could be a viable solution for teleoperated neurointerventional procedures. OBJECTIVE: To determine the indication, robotic systems used, efficacy, safety, and the degree of manual assistance required for robotically performed neurointervention. METHODS: We conducted a systematic review of the literature up to, and including, articles published on April 12, 2021. Medline, PubMed, Embase, and Cochrane register databases were searched using medical subject heading terms to identify reports of robotically performed neurointervention, including diagnostic cerebral angiography and carotid artery intervention. RESULTS: A total of 8 articles treating 81 patients were included. Only one case report used a robotic system for intracranial intervention, the remaining indications being cerebral angiography and carotid artery intervention. Only one study performed a comparison of robotic and manual procedures. Across all studies, the technical success rate was 96% and the clinical success rate was 100%. All cases required a degree of manual assistance. No studies had clearly defined patient selection criteria, reference standards, or index tests, preventing meaningful statistical analysis. CONCLUSIONS: Given the clinical success, it is plausible that robotically performed neurointerventional procedures will eventually benefit patients and reduce occupational hazards for staff; however, there is no high-level efficacy and safety evidence to support this assertion. Limitations of current robotic systems and the challenges that must be overcome to realize the potential for remote teleoperated neurointervention require further investigation.


Subject(s)
Robotics , Cerebral Angiography , Humans , Vascular Surgical Procedures
2.
EBioMedicine ; 76: 103868, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1676709

ABSTRACT

BACKGROUND: The manufacturing of any standard mechanical ventilator cannot rapidly be upscaled to several thousand units per week, largely due to supply chain limitations. The aim of this study was to design, verify and perform a pre-clinical evaluation of a mechanical ventilator based on components not required for standard ventilators, and that met the specifications provided by the Medicines and Healthcare Products Regulatory Agency (MHRA) for rapidly-manufactured ventilator systems (RMVS). METHODS: The design utilises closed-loop negative feedback control, with real-time monitoring and alarms. Using a standard test lung, we determined the difference between delivered and target tidal volume (VT) at respiratory rates between 20 and 29 breaths per minute, and the ventilator's ability to deliver consistent VT during continuous operation for >14 days (RMVS specification). Additionally, four anaesthetised domestic pigs (3 male-1 female) were studied before and after lung injury to provide evidence of the ventilator's functionality, and ability to support spontaneous breathing. FINDINGS: Continuous operation lasted 23 days, when the greatest difference between delivered and target VT was 10% at inspiratory flow rates >825 mL/s. In the pre-clinical evaluation, the VT difference was -1 (-90 to 88) mL [mean (LoA)], and positive end-expiratory pressure (PEEP) difference was -2 (-8 to 4) cmH2O. VT delivery being triggered by pressures below PEEP demonstrated spontaneous ventilation support. INTERPRETATION: The mechanical ventilator presented meets the MHRA therapy standards for RMVS and, being based on largely available components, can be manufactured at scale. FUNDING: Work supported by Wellcome/EPSRC Centre for Medical Engineering,King's Together Fund and Oxford University.


Subject(s)
Equipment Design , Respiration, Artificial/instrumentation , Animals , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Female , Male , Respiratory Rate , SARS-CoV-2/isolation & purification , Swine , Tidal Volume
3.
Front Robot AI ; 8: 611866, 2021.
Article in English | MEDLINE | ID: covidwho-1236782

ABSTRACT

In this paper, we design and develop a novel robotic bronchoscope for sampling of the distal lung in mechanically-ventilated (MV) patients in critical care units. Despite the high cost and attributable morbidity and mortality of MV patients with pneumonia which approaches 40%, sampling of the distal lung in MV patients suffering from range of lung diseases such as Covid-19 is not standardised, lacks reproducibility and requires expert operators. We propose a robotic bronchoscope that enables repeatable sampling and guidance to distal lung pathologies by overcoming significant challenges that are encountered whilst performing bronchoscopy in MV patients, namely, limited dexterity, large size of the bronchoscope obstructing ventilation, and poor anatomical registration. We have developed a robotic bronchoscope with 7 Degrees of Freedom (DoFs), an outer diameter of 4.5 mm and inner working channel of 2 mm. The prototype is a push/pull actuated continuum robot capable of dexterous manipulation inside the lung and visualisation/sampling of the distal airways. A prototype of the robot is engineered and a mechanics-based model of the robotic bronchoscope is developed. Furthermore, we develop a novel numerical solver that improves the computational efficiency of the model and facilitates the deployment of the robot. Experiments are performed to verify the design and evaluate accuracy and computational cost of the model. Results demonstrate that the model can predict the shape of the robot in <0.011s with a mean error of 1.76 cm, enabling the future deployment of a robotic bronchoscope in MV patients.

SELECTION OF CITATIONS
SEARCH DETAIL